Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38265007

RESUMO

Zymoseptoria tritici, the causal agent of septoria tritici blotch, is one of Europe's most damaging wheat pathogens, causing significant economic losses. Genetic resistance is a common strategy to control the disease, Stb6 being a resistance gene used for over 100 years in Europe. This study investigates the molecular mechanisms underlying Stb6-mediated resistance. Utilizing confocal microscopy imaging, we identified that Z. tritici epiphytic hyphae mainly accumulates the corresponding avirulence factor AvrStb6 in close proximity to stomata. Consequently, the progression of AvrStb6-expressing avirulent strains is hampered during penetration. The fungal growth inhibition co-occurs with a transcriptional reprogramming in wheat characterized by an induction of immune responses, genes involved in stomata regulation, and cell wall-related genes. Overall, we shed light on the gene-for-gene resistance mechanisms in the wheat - Z. tritici pathosystem at the cytological and transcriptomic level, and our results highlight that stomata penetration is a critical process for pathogenicity and resistance.

2.
mBio ; 14(5): e0138623, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37642412

RESUMO

IMPORTANCE: Pathogen infections require the production of effectors that enable host colonization. Effectors have diverse functions and are only expressed at certain stages of the infection cycle. Thus, effector genes are tightly regulated by several mechanisms, including chromatin remodeling. Here, we investigate the role of histone acetylation in effector gene activation in the fungal wheat pathogen Zymoseptoria tritici. We demonstrate that lysine acetyltransferases (KATs) are essential for the spatiotemporal regulation of effector genes. We show that the KAT Sas3 is involved in leaf symptom development and pycnidia formation. Importantly, our results indicate that Sas3 controls histone acetylation of effector loci and is a regulator of effector gene activation during stomatal penetration. Overall, our work demonstrates the key role of histone acetylation in regulating gene expression associated with plant infection.


Assuntos
Montagem e Desmontagem da Cromatina , Histonas , Histonas/genética , Histonas/metabolismo , Ativação Transcricional , Acetilação , Doenças das Plantas/microbiologia
3.
New Phytol ; 238(4): 1562-1577, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36529883

RESUMO

Successful host colonization by plant pathogens requires the circumvention of host defense responses, frequently through sequence modifications in secreted pathogen proteins known as avirulence factors (Avrs). Although Avr sequences are often polymorphic, the contribution of these polymorphisms to virulence diversity in natural pathogen populations remains largely unexplored. We used molecular genetic tools to determine how natural sequence polymorphisms of the avirulence factor Avr3D1 in the wheat pathogen Zymoseptoria tritici contributed to adaptive changes in virulence. We showed that there is a continuous distribution in the magnitude of resistance triggered by different Avr3D1 isoforms and demonstrated that natural variation in an Avr gene can lead to a quantitative resistance phenotype. We further showed that homologues of Avr3D1 in two nonpathogenic sister species of Z. tritici are recognized by some wheat cultivars, suggesting that Avr-R gene-for-gene interactions can contribute to nonhost resistance. We suggest that the mechanisms underlying host range, qualitative resistance, and quantitative resistance are not exclusive.


Assuntos
Resistência à Doença , Especificidade de Hospedeiro , Especificidade de Hospedeiro/genética , Resistência à Doença/genética , Polimorfismo Genético , Virulência/genética , Fenótipo , Doenças das Plantas/genética
4.
mBio ; 11(5)2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33024042

RESUMO

Dynamic changes in transcription profiles are key for the success of pathogens in colonizing their hosts. In many pathogens, genes associated with virulence, such as effector genes, are located in regions of the genome that are rich in transposable elements and heterochromatin. The contribution of chromatin modifications to gene expression in pathogens remains largely unknown. Using a combination of a reporter gene-based approach and chromatin immunoprecipitation, we show that the heterochromatic environment of effector genes in the fungal plant pathogen Zymoseptoria tritici is a key regulator of their specific spatiotemporal expression patterns. Enrichment in trimethylated lysine 27 of histone H3 dictates the repression of effector genes in the absence of the host. Chromatin decondensation during host colonization, featuring a reduction in this repressive modification, indicates a major role for epigenetics in effector gene induction. Our results illustrate that chromatin modifications triggered during host colonization determine the specific expression profile of effector genes at the cellular level and, hence, provide new insights into the regulation of virulence in fungal plant pathogens.IMPORTANCE Fungal plant pathogens possess a large repertoire of genes encoding putative effectors, which are crucial for infection. Many of these genes are expressed at low levels in the absence of the host but are strongly induced at specific stages of the infection. The mechanisms underlying this transcriptional reprogramming remain largely unknown. We investigated the role of the genomic environment and associated chromatin modifications of effector genes in controlling their expression pattern in the fungal wheat pathogen Zymoseptoria tritici Depending on their genomic location, effector genes are epigenetically repressed in the absence of the host and during the initial stages of infection. Derepression of effector genes occurs mainly during and after penetration of plant leaves and is associated with changes in histone modifications. Our work demonstrates the role of chromatin in shaping the expression of virulence components and, thereby, the interaction between fungal pathogens and their plant hosts.


Assuntos
Ascomicetos/genética , Montagem e Desmontagem da Cromatina/genética , Regulação Fúngica da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/microbiologia , Fatores de Virulência/genética , Ascomicetos/patogenicidade , Perfilação da Expressão Gênica , Folhas de Planta/microbiologia , Virulência/genética
5.
Mol Biol Evol ; 37(3): 839-848, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31730193

RESUMO

Plant genomes have evolved several evolutionary mechanisms to tolerate and make use of transposable elements (TEs). Of these, transposon domestication into cis-regulatory and microRNA (miRNA) sequences is proposed to contribute to abiotic/biotic stress adaptation in plants. The wheat genome is derived at 85% from TEs, and contains thousands of miniature inverted-repeat transposable elements (MITEs), whose sequences are particularly prone for domestication into miRNA precursors. In this study, we investigate the contribution of TEs to the wheat small RNA immune response to the lineage-specific, obligate powdery mildew pathogen. We show that MITEs of the Mariner superfamily contribute the largest diversity of miRNAs to the wheat immune response. In particular, MITE precursors of miRNAs are wide-spread over the wheat genome, and highly conserved copies are found in the Lr34 and QPm.tut-4A mildew resistance loci. Our work suggests that transposon domestication is an important evolutionary force driving miRNA functional innovation in wheat immunity.


Assuntos
Elementos de DNA Transponíveis , MicroRNAs/genética , Locos de Características Quantitativas , Triticum/crescimento & desenvolvimento , Adaptação Biológica , Resistência à Doença , Domesticação , Evolução Molecular , Dosagem de Genes , Variação Genética , RNA de Plantas/genética , Triticum/genética , Triticum/microbiologia
6.
Plant Phenomics ; 2019: 3285904, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-33313526

RESUMO

Accurate, high-throughput phenotyping for quantitative traits is a limiting factor for progress in plant breeding. We developed an automated image analysis to measure quantitative resistance to septoria tritici blotch (STB), a globally important wheat disease, enabling identification of small chromosome intervals containing plausible candidate genes for STB resistance. 335 winter wheat cultivars were included in a replicated field experiment that experienced natural epidemic development by a highly diverse but fungicide-resistant pathogen population. More than 5.4 million automatically generated phenotypes were associated with 13,648 SNP markers to perform the GWAS. We identified 26 chromosome intervals explaining 1.9-10.6% of the variance associated with four independent resistance traits. Sixteen of the intervals overlapped with known STB resistance intervals, suggesting that our phenotyping approach can identify simultaneously (i.e., in a single experiment) many previously defined STB resistance intervals. Seventeen of the intervals were less than 5 Mbp in size and encoded only 173 genes, including many genes associated with disease resistance. Five intervals contained four or fewer genes, providing high priority targets for functional validation. Ten chromosome intervals were not previously associated with STB resistance, perhaps representing resistance to pathogen strains that had not been tested in earlier experiments. The SNP markers associated with these chromosome intervals can be used to recombine different forms of quantitative STB resistance that are likely to be more durable than pyramids of major resistance genes. Our experiment illustrates how high-throughput automated phenotyping can accelerate breeding for quantitative disease resistance.

7.
BMC Biol ; 16(1): 78, 2018 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-30012138

RESUMO

BACKGROUND: Fungal plant pathogens pose major threats to crop yield and sustainable food production if they are highly adapted to their host and the local environment. Variation in gene expression contributes to phenotypic diversity within fungal species and affects adaptation. However, very few cases of adaptive regulatory changes have been reported in fungi and the underlying mechanisms remain largely unexplored. Fungal pathogen genomes are highly plastic and harbor numerous insertions of transposable elements, which can potentially contribute to gene expression regulation. In this work, we elucidated how transposable elements contribute to variation in melanin accumulation, a quantitative trait in fungi that affects survival under stressful conditions. RESULTS: We demonstrated that differential transcriptional regulation of the gene encoding the transcription factor Zmr1, which controls expression of the genes in the melanin biosynthetic gene cluster, is responsible for variation in melanin accumulation in the fungal plant pathogen Zymoseptoria tritici. We show that differences in melanin levels between two strains of Z. tritici are due to two levels of transcriptional regulation: (1) variation in the promoter sequence of Zmr1 and (2) an insertion of transposable elements upstream of the Zmr1 promoter. Remarkably, independent insertions of transposable elements upstream of Zmr1 occurred in 9% of Z. tritici strains from around the world and negatively regulated Zmr1 expression, contributing to variation in melanin accumulation. CONCLUSIONS: Our studies identified two levels of transcriptional control that regulate the synthesis of melanin. We propose that these regulatory mechanisms evolved to balance the fitness costs associated with melanin production against its positive contribution to survival in stressful environments.


Assuntos
Ascomicetos/genética , Regulação da Expressão Gênica , Melaninas/genética , Doenças das Plantas/microbiologia , Triticum/microbiologia , Elementos de DNA Transponíveis , Genoma Fúngico , Família Multigênica
8.
New Phytol ; 219(3): 1048-1061, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29693722

RESUMO

Cultivar-strain specificity in the wheat-Zymoseptoria tritici pathosystem determines the infection outcome and is controlled by resistance genes on the host side, many of which have been identified. On the pathogen side, however, the molecular determinants of specificity remain largely unknown. We used genetic mapping, targeted gene disruption and allele swapping to characterise the recognition of the new avirulence factor Avr3D1. We then combined population genetic and comparative genomic analyses to characterise the evolutionary trajectory of Avr3D1. Avr3D1 is specifically recognised by wheat cultivars harbouring the Stb7 resistance gene, triggering a strong defence response without preventing pathogen infection and reproduction. Avr3D1 resides in a cluster of putative effector genes located in a genome region populated by independent transposable element insertions. The gene was present in all 132 investigated strains and is highly polymorphic, with 30 different protein variants identified. We demonstrated that specific amino acid substitutions in Avr3D1 led to evasion of recognition. These results demonstrate that quantitative resistance and gene-for-gene interactions are not mutually exclusive. Localising avirulence genes in highly plastic genomic regions probably facilitates accelerated evolution that enables escape from recognition by resistance proteins.


Assuntos
Ascomicetos/metabolismo , Ascomicetos/patogenicidade , Resistência à Doença , Proteínas Fúngicas/metabolismo , Genomas de Plastídeos , Doenças das Plantas/microbiologia , Fatores de Virulência/metabolismo , Sequência de Aminoácidos , Cromossomos de Plantas/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Família Multigênica , Polimorfismo Genético , Triticum/microbiologia , Virulência , Fatores de Virulência/química , Fatores de Virulência/genética
9.
J Microbiol Methods ; 114: 26-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25937247

RESUMO

We describe high-throughput screening techniques to rapidly detect either antimicrobial activity, using an agar-well diffusion assay in microtiter plates, or antifungal activity using an agar-spot assay in 24-well plates. 504 Lactobacillus isolates were screened with minimal laboratory equipment and screening rates of 2000-5000 individual antimicrobial interactions.


Assuntos
Antibiose , Ensaios de Triagem em Larga Escala/métodos , Lactobacillus/fisiologia , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Antifúngicos/isolamento & purificação , Antifúngicos/farmacologia , Lactobacillus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...